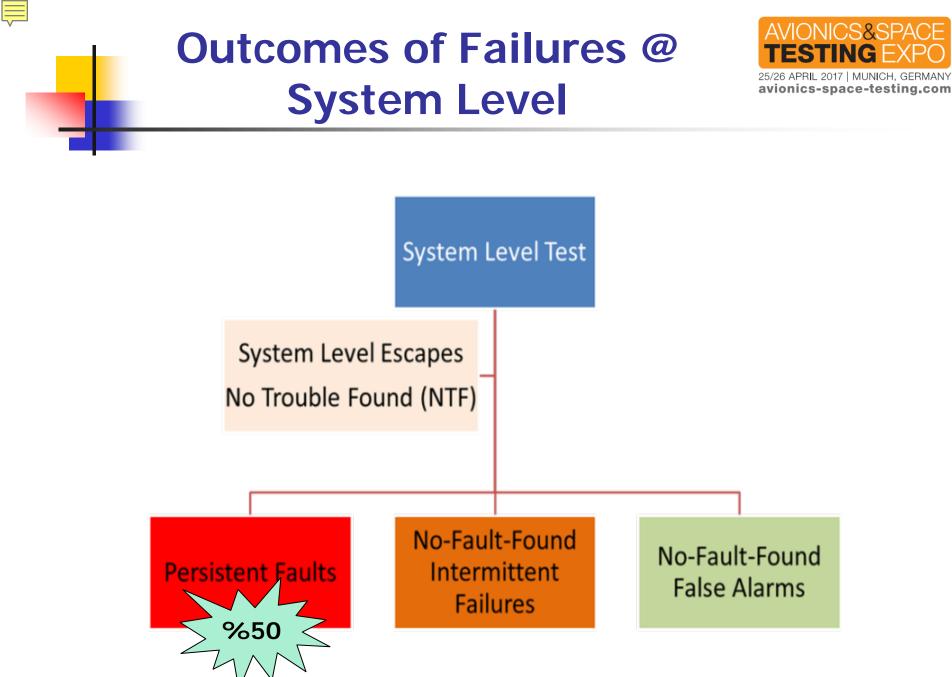
Managing the "False Alarms" & "No Fault Found" Events in Military Avionic Systems

25/26 APRIL 2017 | MUNICH, GERMANY avionics-space-testing.com Mustafa iLARSLAN, PhD. (R) Col. TurAF

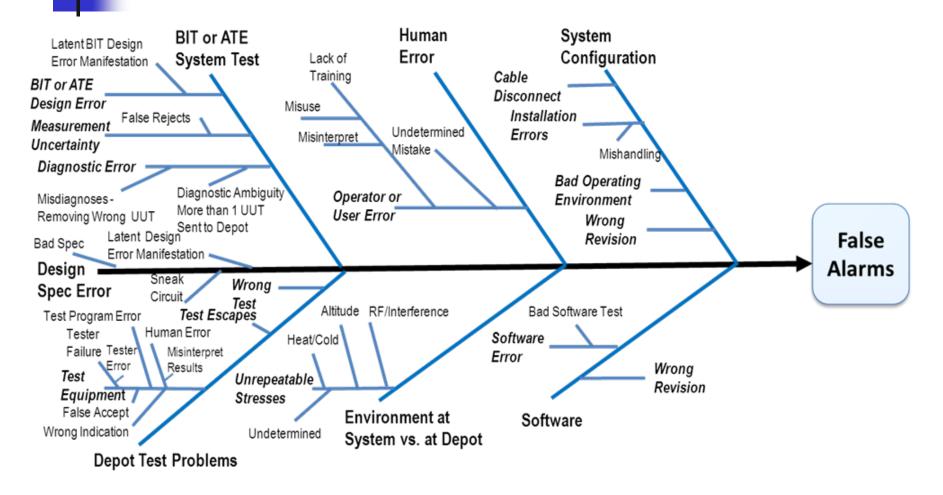
- Background & Introduction
- > Turkish Air Force Avionics Testing Results
- > Observations from the Field
- Recommendations to Mitigate FAs and NFFs
- Summary
- Conclusions

- Test professionals are concerned with **finding faults** in a UUT.
- Most TPSs and BIT are considered effective when they find all faults that exist,
 - Test quality metrics is generally based on percentage of faults or failures detected.
- What happens when nonexistent faults are found in addition to or instead of existing ones?



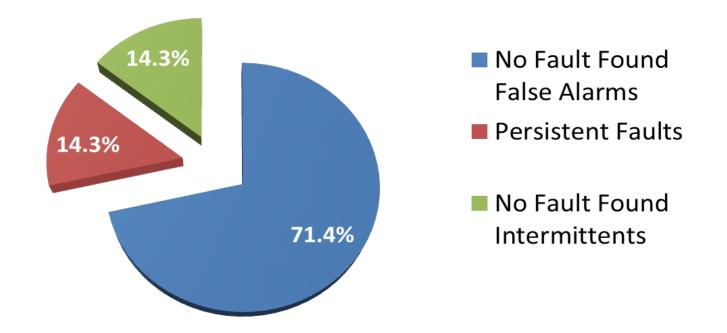
- An LRU that is sent for repair is unwisely assumed to be faulty.
 - That presumption neglects to take into account other possibilities for the **failure indication**.
- False alarms (FAs) are indications to the end user that a failure has occurred when either;
 - It did not occur generally called FAs,
 - The failure was due to intermittent failures,
 - Inadequate test equipment, test program or test strategy.

25/26 APRIL 2017 | MUNICH, GERMANY avionics-space-testing.com


Causes of Intermittent Failures

Source: Qi H, Ganesan S, Pecht M, No-fault-found and intermittent failures in electronic products, 2008

Causes of False Alarms



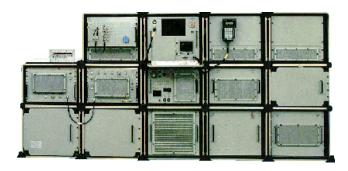
Louis Y. Ungar, Causes and Costs of No Fault Found, IPC Apex, 2015

Units Arriving at Depot Repair

Louis Y. Ungar, Causes and Costs of No Fault Found, IPC Apex, 2015

- The F/A-18C was fielded with a built-in test (BIT) false alarm rate over 88% and a mean flight hour between false alarm (MFHBFA) rate of less than 1 hour.
 - K. Bain and David G. Orwig, "F/A-18E/F Built-in-test (BIT) Maturation Process," Proceedings of NDIA Third Annual Systems Engineering & Supportability Conference, August 2000
- The V-22 displayed a BIT false alarm rate of 92% during its first Operational Test and Evaluation (OPEVAL) in 2000
 - K. Westervelt, "Fixing BIT on the V-22 Osprey," 2006 IEEE Aerospace Conference Proceedings, 2006
 - K. Westervelt, "Applying the Quality Function Deployment on the V-22 Osprey," 2010 IEEE Aerospace Conference, pp. 1-12, 2010.

From: Russell Shannon and John Knecht, Optimizing Diagnostic Verification Processes, AutoTestCon 2010


- Technicians are confused about NFF;
 - Should they return it to the field?
 - Should they repair it anyway? How?
- > The concepts of FA and NFF are complex,
 - The management is unable to give proper direction on how to handle it.
- The decisions made are important financially, operationally and organizationally.
- Data from the TurAF F-16 avionics maintenance operations analyzed to improve the management of NFF.
 - The lessons learned can save large sums of money, while maintaining system availability.

TurAF Avionics Testing Results Avionics Maintenance Operations

- TurAF has a large fleet of F-16 aircraft of various types.
- Most of its fleet has gone through an extensive avionics modernization program.
- Each F-16 base, maintenance units have special ATE and TPSs called IAIS (Improved Avionics Intermediate Shop) for the "Intermediate level" maintenance of the F-16 avionics.

TurAF Avionics Testing Results Avionics Maintenance Operations

- TurAF has adopted a 3-level maintenance concept for F-16.
 - The flight line, where the LRUs are removed and replaced per the aircraft built-in test (BIT) results.
 - The base or intermediate level (I-level) maintenance where the faulty LRUs are tested automatically by the ATE (named IAIS).
 - Sub-units of electronic cards called SRUs (Shop Replaceable Units) that are removed and replaced.
 - Then SRUs are sent to depot level maintenance where they are tested and repaired by component replacement.

- Many faulty units (mostly SRUs and some LRUs) from TurAF F-16 bases are sent to USA for DLM.
 - Costs more than local repair.
- > Most RF LRUs are repaired at HAVELSAN.

Technology Type	All Returns	NFFs	% NFF
RF	319	94	29,5%
Mixed	232	130	56,0%
Digital	368	175	47,6%
Analog	54	34	63,0%
TOTAL	973	433	44,5%


Management Perspective of NFFs

- > NFF is a regular part of the avionics maintenance.
- While the technicians cannot fix NFFs, they need guidance on how to deal with them.
- The TurAF F-16s may be experiencing less NFF than others;
 - Costs are amplified when units have to go to the USA for repairs.
 - There is a natural pressure on repair technicians to fix the problem.

TurAF Avionics Testing Results Observations from the Conference

Management Perspective of NFFs

- Improve contact with vendors and USAF depot.
- > AIS technicians to take more time and be specific when filling the forms.
- All AIS shops requested full serviceable set of avionic LRUs.
 - Indication of experiencing high NFF rates and having difficulty to troubleshoot and isolate to the faulty SRUs.

Technicians Dealing with NFFs

- `Golden units` used as reference.
- > No "bad actors" reported.
- 'Zero tolerance' policy for avoiding serious maintenance problems – abort, repeat
 - Shot-gun maintenance
 - Label the LRU as NRTS.

Observations from the Field

Technicians Dealing with NFFs

- » NFF is the norm rather than the exception.
- > Ambiguity on the aircraft results in removal of multiple LRUs.
- Come back as NFF or as fixed based on technician`s experience due to "repeat pressure"

Increase the NFF rates at the depot.

Technicians Dealing with NFFs

- Web-based data base program.
- Make suspect LRUs as NRTS
- > Avoid repeat/abort type problems.

Observations from the Field

System Managers Dealing with NFFs

- NRTS reduces stress on the local managers and the technicians.
- Increased financial toll for TurAF.
- Then, the system managers at ALC are under pressure
- Send the units to other AIS shops.
- > Make sure that the LRU is really faulty.
- Its serviceable parts used for "shot-gun maintenance" and "cannibalization".
- Reason for heavy cross-service LRU traffic.

Mitigating FAs and NFFs @ the Flight Line & Beyond

Wholistic Approach

- > Use System Level BIT to reduce FAs DFT
- Ensure specs agree with operation
- Reduce operator error with better training
- Reduce system configuration errors
- Expect and mitigate software errors
- Expect and monitor environmentally induced failures
- Improve fault isolation to a single LRU close to 100%

Mitigating FAs and NFFs at the Shop

- The prevailing policy of the TurAF calls for not to attempt to repair NFFs by overenthusiastic technicians.
- Train technicians on NFFs
 - Expect NFFs as a natural phenomenon
 - More telling way to document the occurrences of NFFs
 - "Repeat pressure" should not lead to unnecessary repairs
- The management needs to know that technician alone has no power to avoid NFFs and very little power to "fix" it.

STOP BLAMING THE TECHNICIAN..!

- » NFF is not a new problem but still largely unsolved and affecting all kinds of a/c.
- FA and NFF data from the TurAF F-16 are lower than others.
 - May be at the expense of increased costs.
- » NFFs are complex and technicians should not be in a position to have to deal with them.
 - Technicians should not be the ones to suffer or be punished for NFFs,
- 'Replacement' is not the solution and 'Pressure' hinders the real progress towards solution.

> TRAINING for All.

- Better Communication between the maintenance levels.
- Look outside the avionics maintenance shop.
- FAs and diagnostic ambiguity are main contributors and hence more focus should be placed on the system on flight line & beyond.
 - LRU supplier and BIT on the aircraft
 - System Integrator
 - Design for Testability
- 777 & 787 programs are cited as good examples.

NFF Studies...

- > ADS MRO&L NFF Working Group
 - Prof. C J Hockley Cranfield Uni.
 - Mr. Ian James Rolls Royce
 - Mr. G M Gilles Huby Copernicus Tech. Ltd. (<u>https://www.linkedin.com/pulse/maintenance-problem-measured-billions-giles-huby</u>)
 - NFF symposium (June 2017)
- Mr. Louis UNGAR ATE Solutions Ltd. (<u>https://www.linkedin.com/pulse/false-alarms-well-</u> intentioned-killers-louis-y-ungar) <u>www.besttest.com/</u>
- Mr. Brent Sorensen Universal Synaptics Corp. <u>www.usynaptics.com</u>
- > IEEE AUTOTESTCON, ITC conferences

Thanks for listening..! Dinlediğiniz için Teşekkürler..!

